INTRODUCTION

Three species in West Africa are characterized by possessing a prominent tail crest in adult males: Agama boulengeri, A. insularis and A. cristata. The taxonomic status of these taxa is the focus of this study.

Agama insularis, was described by Chabanaud (1918) on the basis of a juvenile and a subadult female collected by Dr. G. Bouet in 1914 on Île Roumé, which is part of the Îles de Los archipelago located in the Atlantic Ocean just several kilometres (ca. 8 km) offshore from Conakry, Guinea. In his description of A. insularis, Chabanaud (1918) only compared his new species with Agama kirki

Studies on African Agama VI.

Taxonomic status of the West African Agama (Sauria: Agamidae) with prominent tail crests: Agama boulengeri Lastate 1886, Agama insularis Chabanaud, 1918 and Agama cristata Mocquard, 1905

Philipp Wagner1*, Ivan Ineich2, Adam D. Leaché3, Thomas M. Wilms4, Sébastien Trape5, Wolfgang Böhme1 & Andreas Schmitz6

1 Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, D-53113 Bonn, Germany philipp.wagner.zfmk@uni-bonn.de; w.boehme@uni-bonn.de
2 Museum national d’Histoire naturelle, Departement de Systematique et Evolution (Section Reptiles) UMR 7205 CNRS “Origine, Structure et Evolution de la Biodiversite”, CP n° 30–25 rue Cuvier, F-75231 Paris Cedex 05, France.
3 Genome Center & Department of Evolution and Ecology, University of California, Davis, CA 95616 USA.
4 Zoologischer Garten Frankfurt, Bernhard-Grzimek-Allee 1, D-60316 Frankfurt, Germany
5 Université de Montpellier II, UMR 5119 Ecolag, IRD-CNRS-UM2-IFREMER, cc093, place Eugène Bataillon, F-34095 Montpellier, France.
6 Muséum d’histoire naturelle, 1 route de Malagnou, CH-1208 Geneva, Switzerland *corresponding author

Abstract. This publication reviews the taxonomy of three West African Agama species, A. boulengeri, A. cristata, and A. insularis, each characterized by a prominent tail crest in adult males. Following the results from morphological and genetic analyses, Agama insularis is recognized as a synonym of the revalidated Agama cristata, whereas this species is clearly distinct from Agama boulengeri. We present a detailed distribution map for these Agama species, as well as for A. weidholzi. Following the results of recent publications, Agama atra knobeli is herein regarded as a full species.

Key words. Africa, Guinea, Los Islands, Île de Roumé; Sauria, Agamidae, Agama cristata, A. insularis, A. boulengeri, A. knobeli, Agama weidholzi.

INTRODUCTION

Three species in West Africa are characterized by possessing a prominent tail crest in adult males: Agama boulengeri, A. insularis and A. cristata. The taxonomic status of these taxa is the focus of this study.

Agama insularis, was described by Chabanaud (1918) on the basis of a juvenile and a subadult female collected by Dr. G. Bouet in 1914 on Île Roumé, which is part of the Îles de Los archipelago located in the Atlantic Ocean just several kilometres (ca. 8 km) offshore from Conakry, Guinea. In his description of A. insularis, Chabanaud (1918) only compared his new species with Agama kirki
Fig. 1. The two syntypes of *Agama insularis* Chabanaud, 1918 (MNHN 1918.041-042).
Boulenger, 1884 from southern Africa and stated both as closely related. The only morphological differences noted were related to (1) head shapes (more elongate in A. insularis) and (2) body sculation (A. insularis has smaller scales, 120–130 scale rows around midbody versus about 90 in A. kirkii, and A. insularis had dorsal scales that are smaller compared to ventral scales.

Based on a larger series of specimens collected from the type locality, which included adult specimens, PARKER (1939) reassessed the validity of A. insularis (material of the IRSNB, Appendix 1). In this publication PARKER (1939) also compared A. insularis with A. boulengeri. Lateste, 1886, a morphologically similar species distributed in Mauritania and Mali. He distinguished A. insularis from A. boulengeri by its more strongly carinate scales, especially on the occiput and lower surfaces of the tail; larger nasal, separated from the rostral by a single elongate scale; larger number of labial scales, 8–9 versus 11 and the colouration of adult males. Nevertheless, PARKER (1939) only described the adult colouration from preserved specimens. Adult males are brownish black above with light specking, especially on the vertebral region; lower surfaces of the head, chest and abdomen are blackish-grey; middle of the gular region is jet black. JOGER (1979) described the adult male colouration of living A. boulengeri as follows: (1) ground colour pale grey-brown with transverse rows of white spots; (2) throat dirty white with longitudinal stripes, parts of the head gray-blue; (3) tail gray-blue and (4) a characteristic half-moon shaped black bar on the anterior margin of the shoulder. LAMBERT & MULLÉ (1998) refer, beside the tail crest of the males, to the nuptial colouration of females as the most striking difference between the sexes of A. boulengeri. They describe the males as drab with uniform purple-grey coloured scales dorsally, whereas the females have a brilliant yellow mid-dorsal band with three approximately bat-shaped transverse bands on a bright orange background.

LAURENT (1947) reported a series of Agama insularis from Îles Roumé and a neighboring island, Île Kassa, and mentioned that the characters given by PARKER (1939) were in agreement with his specimens. However, LAURENT (1947) described additional sources of morphological variation, including 10 to 13 precloacal pores, 8 to 10 supralabial and 7 to 10 infralabial scales. Because of differences in the number of scale rows around midbody (Île Roumé: 115 to 125; Île Kassa: 143 to 147) he suggested that the Île Kassa population deserved subspecific status.

The taxonomic status of Agama insularis has been changed since these early studies. GUIBÉ (1954) listed A. insularis as valid in the type catalogue of the collection of the Muséum national d’histoire naturelle in Paris, although WERMUTH (1967) regarded this species as questionable, since it was only known at this time from its type locality. JOGER (1979) reasserted the validity of A. insularis; however, MOODY (1980) placed A. insularis in synonymy of A. boulengeri, but without giving a reason. Nevertheless, BOHME (1985) followed JOGER (1979) and stated that A. insularis and A. boulengeri are both valid species and probably closely related. Finally, BRYGOO (1988) and ULBER & BARTS (1997) treated A. insularis as a valid species, although without offering additional comments regarding this decision.

Interestingly, another species of Agama from West Africa possessing a prominent tail crest has remained mostly overlooked since its description. Agama cristata was described by MOQUARD (1905) from a single specimen collected from Bomanesco (Sankaran) in Guinea by M. A. Chevalier, and later donated to the Muséum national d’histoire naturelle in Paris by M. Maurice de Rothschild. MOQUARD (1905) did not compare his new species with any other species and characterized it mainly by the large crest proceeding from the neck to the tail. Later, A. cristata was apparently regarded as a synonym of A. sankaranica Chatbaud, 1918 by GUIBÉ (1954) and WERMUTH (1967), presumably because both taxa share the same type locality (A. sankaranica: Moussaia, Sankaran, Guinea; A. cristata: Bomanesco, Sankaran, Guinea). Later, BRYGOO (1988) confirmed the validity of A. cristata in his type catalogue presumably because of the tail crest, but again he was not followed by ULBER & BARTS (1997).

Despite the presence of a prominent tail crest in adult males shared between Agama cristata, A. boulengeri and the island endemic species, Agama insularis, a comparison of these species remains to be conducted. In contrast to the previous three species, A. sankaranica and Agama weidholzi Wettstein, 1932 are small and solitary-living species. The latter was included in the comparison, because it is endemic to this region and so far only known from Senegal (e.g. WETTSTEIN 1932), Gambia (BOHME 2005), Mali (e.g. GRANDISON 1969) and Guinea-Bissau (MONARD 1940). Additionally, MONARD (1940) included specimens of A. weidholzi and A. sankaranica in the type series of A. boensis. (GRANDISON 1969, BOHME 2005) and for that reason a close relation to A. sankaranica could be possible.

Our aim is therefore to compare the species of Agama with prominent tail crests in adult males (Agama cristata, A. boulengeri and the island endemic species, Agama insularis) to clarify their taxonomic status, distribution, and phylogenetic relationships. We also include other species of West African Agama in our study that lack prominent tail crests in adult males, but that are hypothesized to be close relatives because they occur in the same areas.
Fig. 2. The holotypes of a) *Agama sankaranica* (MNHN 1901.0395) and b) *Agama cristata* (MNHN 1901.0394).
MATERIAL & METHODS
The voucher specimens examined in this study are accessioned in the following natural history collections: Collection of Jean François Trape, deposited in Institut de Recherche pour le Développement (IRD) Dakar, Senegal (TR); Institut royal des Sciences naturelles de Belgique (IRSNB); Museum national d’histoire naturelle de Paris, France (MNHN); Museum für Naturkunde, Berlin, Germany (ZMB) and Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany. The type specimens of *Agama cristata* and *A. insularis* were included, however, the type specimens of *A. insularis* are juveniles and therefore topotypical material was also used for this taxon.

Since several studies have now shown that DNA barcoding, especially when using the mitochondrial 16S rRNA gene, is a reliable tool in reptile or amphibian taxonomy (e.g. Vences et al. 2005; B Wong et al. 2009) molecular data were collected to calculate a simple neighbour-joining phylogeny (fig. 4) and to analyse the sequence variation between species. A portion of the mitochondrial 16S rRNA gene of *Agama insularis* (ZFMK 88247; GenBank accession number: GU133326) from the type locality, as well as *Agama cristata* (TR555; GenBank accession number: GU133325) from Guinea, *Agama boulengeri* (MNHN; GenBank accession number: GU133324) from Mauritania, *Acanthocercus atricolis* (ZFMK 89247; GenBank accession number: GU133328) from Gambia, *Agama weidholzi* (ZFMK 75001; GenBank accession number: GU133327) from an unknown locality and *Agama agama* (ZFMK 15222 [neotype]; GenBank accession number: GU133323) were sequenced.

DNA was extracted using QuiAmp tissue extraction kits (Quiagen) or a modified Chelex-Protocol (W AlsH et al. 2002) using Quiagen tissue extraction kits (Quiagen) or a modified Chelex-Protocol (W AlsH et al. 2002) molecular data were collected to calculate a simple neighbour-joining phylogeny (fig. 4) and to analyse the sequence variation between species. A portion of the mitochondrial 16S rRNA gene of *Agama insularis* (ZFMK 88247; GenBank accession number: GU133326) from the type locality, as well as *Agama cristata* (TR555; GenBank accession number: GU133325) from Guinea, *Agama boulengeri* (MNHN; GenBank accession number: GU133324) from Mauritania, *Acanthocercus atricolis* (ZFMK 41748; GenBank accession number: GU133322) was used as outgroup.

The following measurements and scale counts were used to compare the different species in statistical analysis (for selected characters see table 1): Snout-vent length (SVL): measured from mental scale to cloaca; tail length (TL): measured from cloaca to tip of tail; Tail crest length (TcL): length of the tail crest from midpoint of pelvic region to tip of crest; head length (HL): measured from jugale to rostral scale; head height (HH): measured at the jugal-postorbital region; head width (HW): measured across the jugal-postorbital region just anterior to the external auditory meatus; Midbody scales (MS): scale rows around midbody; tail crest scales (TcS): number of tail crest scales, counted from midpoint of pelvic region to tip of crest; dorsal scales (DS): number of midline longitudinal dorsal scales, counted from midpoint of pectoral region to midpoint of pelvic region; cloacal pores (CP).

Excel 2000 and SPSS (10.0) software packages were used to run statistical analyses. Hierarchical Cluster analysis and Principal Component Analysis (PCA) were used to evaluate the morphological data and to explore the phenetic relationships between the taxa examined.

RESULTS & DISCUSSION
Morphology. Significant differences were found when the effect of body sizes was removed from analyses (see fig. 3), but there is still a high level of overlap among species in all PC’s. Best results were found in PC 1 and 2 (PC 1= 41.379% of variance; PC 2= 25.825% of variance; PC 3= 24.098% of variance; PC 4= 8.699% of variance) and are visualized in fig. 3. *Agama insularis* has a significantly larger relative head height, head width and head length than *A. boulengeri*, but lower average of mid-body scale rows and significantly smaller relative head length than *A. cristata*. *Agama cristata* differs significantly in a higher average of mid-body scale rows and larger relative head length from both *A. insularis* and *A. boulengeri*. *Agama boulengeri* differs significantly in smaller relative head height, head width and head length from both *A. insularis* and *A. cristata*. Males have significantly lower tail-crest-scales and tail-crest-length than either *A. insularis* or *A. cristata*. Differences in pholidosis between *A. boulengeri* and *A. cristata* are low and mostly overlapping (see table 1), which is unsurprising within the genus *Agama*. But in average, *A. cristata* has a higher count of scale rows around midbody than *A. boulengeri*. Also the differences in colouration between *A. boulengeri* and *A. cristata* are low. Small differences in colouration were found between *Agama boulengeri* on one hand and *A. cristata* on the other hand. Especially the colouration of the throat in adult
Agama boulengeri is distinct in pholidosis, colouration and genetics from A. insularis and A. cristata. But no significant differences in morphology and genetics were found between A. cristata and A. insularis. It is important to note that this result is based on an examination of type specimens, topotypical material, and freshly collected material (see appendix). Therefore we consider Agama insularis Chabanaud, 1918 as a junior synonym of the revalidated Agama cristata Mocquard, 1905.

Agama cristata MOCQUARD, 1905

Holotype. MNHN 1901.0394.

Terra typica. Bomanesco, Sankaran, Guinea.

Comment on Nomenclature. BARABANOV (2008) recently proposed a nomen novum for Agama cristata Mocquard, 1905 because he recognized this taxon as a primary junior homonym of Agama cristata Merrem, 1820, recently known as the iguanid lizard Corytophanes cristatus. However, WAGNER & BÖHME (2009) did not accept this suggestion because in accordance to article 23.9.5 of the ICZN (1999) the author failed to refer the case to the Com-
mission of Zoological Nomenclature which would be necessary because both taxa are not congeneric since 1827, where BOIE (in SCHLEGEL 1827) connects Merrem’s *cristata* as type species with his newly described genus *Corythophanes*.

Diagnosis. A large species of *Agama* (total length of adult male up to 340 mm), which is characterized by its bluish-black colouration on the throat and the large nuchal and tail crests of adult males.

The species differs from nearly all other *Agama* species in having a large tail crest, usually reaching the last third of the tail. Only three other species, *A. boulengeri*, *A. kirkii* and *A. knobeli*, have such a prominent tail crest.

Agama cristata differs in detail from:

1. *A. boulengeri* in (a) higher numbers of scales rows around midbody (97 to 123 in *A. boulengeri* and 111 to 147 [latter value fide LAURENT 1947] in *A. cristata*); in

Fig. 4. Neighbor-joining tree based on 496 bp of the mitochondrial 16S rRNA gene. Values above the nodes represent bootstrap (20000 pseudo-replicates) values in percent for the neighbor-joining analysis. Significantly supported values are in bold. Values below 50% are not shown.
having smaller relative head height, head width and head length; and (c) males of *A. boulengeri* have a lower number of tail-crest-scales and a lower length of the tail-crest. (d) male coloration (larger ocelli, lower parts of the throat and gular fold deep bluish-black).

(2) *A. kirkii* in (a) having smaller body scales; (b) dorsal scales are smaller than ventral scales; and (c) in having no narrow blue and white banded tail (d) a geographic distribution confined to northern parts of southern Africa (Malawi, Zambia, Zimbabwe, Mozambique, Botswana).

(3) *A. knobeli* is herein recognized as a valid species, because we recognized striking dissimilarities in morphology between *A. knobeli* and the former nominate form *A. atra*: *Agama atra* is lacking the prominent large tail crest and has more spinose scales as *A. knobeli*, but further research on the relationships of these two species is in need. However, *A. knobeli* differs from *A. cristata* in (a) having larger body scales, (b) dorsal scales in same size as ventral scales and (c) in having a pale vertebral stripe in nuptial coloured adult males, and (d) a geographic distribution restricted to Namibia.

Colouration in alcohol. The holotype of *A. cristata* is uniform brown. Syntypes of *A. insularis* are grey to brown in different shades, but typical ocelli of *Agama* females and juveniles are visible. One subadult female specimen (TR 2353) from the island Île de Roumé (Los islands) is uniform brown with scattered orange stripes and bars on the body and shows dark stripes on a white throat. Even juveniles from the same locality show dark framed ocelli on the body and white dots on the head. In both juveniles (MNHN 2008.0023, TR 2352) a lateral orange stripe is obvious.

Table 1. Comparison of measurements and pholidosis.

<table>
<thead>
<tr>
<th></th>
<th>Agama boulengeri</th>
<th>Agama cristata</th>
<th>Agama weidholzi</th>
<th>Agama gracilimembris</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVL</td>
<td>88.4 (62.5–129.8), 22</td>
<td>92.0 (69.0–123.0), 16</td>
<td>54–65</td>
<td>44–57</td>
</tr>
<tr>
<td>TL</td>
<td>185.0 (119.2–236.2), 12</td>
<td>149.3 (98.8–215.0), 12</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HH</td>
<td>11.0 (8.1–16.3), 22</td>
<td>12.3 (8.6–17.6), 16</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HW</td>
<td>16.1 (12.0–24.0), 22</td>
<td>17.5 (11.1–23.8), 16</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HL</td>
<td>23.8 (17.0–33.6), 22</td>
<td>25.3 (20.1–33.3), 16</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SAM</td>
<td>112.9 (97–123), 22</td>
<td>121.4 (111–136), 13</td>
<td>68–82</td>
<td>70–85</td>
</tr>
<tr>
<td>TCS</td>
<td>71.3 (62–78), 10</td>
<td>77.5 (75–80), 6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PP</td>
<td>11.3 (8–14), 12</td>
<td>11.4 (10–13), 7</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

SVL = snout-vent length; **TL** = tail length; **HH** = head height; **HW** = head width; **HL** = head length; **SAM** = scale rows around midbody; **TCS** = tail crest scales; **PP** = precloacal pores. All measurements in mm; *= after GRANDISON 1969.

Table 2. Uncorrected p-distances for 496 bp of the mitochondrial 16SrRNA sequences used in this study.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Acanthocercus atricollis ZFMK 41748</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Agama boulengeri MNHN</td>
<td>0.2135</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Agama agama ZFMK 15222</td>
<td>0.2029</td>
<td>0.1348</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Agama cristata TR555</td>
<td>0.1937</td>
<td>0.1405</td>
<td>0.1040</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Agama insularis ZFMK 88247</td>
<td>0.2022</td>
<td>0.1553</td>
<td>0.1123</td>
<td>0.0072</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Agama sankaranica ZFMK 84992</td>
<td>0.1929</td>
<td>0.1209</td>
<td>0.0803</td>
<td>0.1036</td>
<td>0.1192</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>7. Agama weidholzi ZFMK 75001</td>
<td>0.2117</td>
<td>0.1590</td>
<td>0.1069</td>
<td>0.0892</td>
<td>0.1002</td>
<td>0.1068</td>
<td>–</td>
</tr>
</tbody>
</table>

(b) having smaller relative head height, head width and head length; and (c) males of *A. boulengeri* have a lower number of tail-crest-scales and a lower length of the tail-crest. (d) male coloration (larger ocelli, lower parts of the throat and gular fold deep bluish-black).
Fig. 5. Images of the following Agama species (in life):
Colouration in life (see fig. 5). Males. Body brownish, scattered with dark framed white to creamy ocelli, usually bigger ocelli form distinct rows. Lips creamy to bluish-creamy. Head and neck brownish with a pale stripe underneath the eye. Lower parts of the throat and gular fold deep bluish-black with strips running to the chin. Posterior part of the neck, body, parts of the hindlimb and tail sometimes speckled with white and dark scales. Sometimes a pale vertebral band between the limbs is obvious. Tail at the base pale speckled black, downwards brownish. Belly and underside of the limbs creamish to dark grey.

Females. Body brownish, scattered with dark framed white to creamy ocelli, when pregnant with dark orange to red coloured bands on the lateral body sides between the limbs. Sometimes lateral parts of the body white followed by a darker band and pale brownish on vertebral parts. Head and neck brownish with pale to yellow dots on the upper head and a pale stripe underneath the eye. Lips creamy to white.
Fig. 8. Comparison of tail regenerates with x ray images (point of fracture indicated by arrows): A) original tail of *Agama boulengeri* (ZMB 22922). B, C) long tail regenerate of *A. boulengeri* (ZMB 55884). D, E) short tail regenerate of *A. boulengeri* (ZMB 55885). F, G) short tail regenerate of *A. boulengeri* (ZMB 55887)
Fig. 9. A remarkable bifurcated tail in a specimen of *Agama lionotus lionotus* (Kenya: Kitui District, NMK L/1252).
Juveniles. Juveniles are only known from preserved vouchers.

Distribution. A. cristata is so far only known from Guinea. Beside the type localities of the two taxa, the species is also recorded from the hydroelectrical power station at Kinkon water falls (11°2′54.9″N 12°27′1.8″W; about 820 m a.s.l.) and the Pastoria station (former Institute Pasteur) (10°5′36.5″N 12°50′21″W; about 388 m a.s.l.).

Agama boulengeri is endemic to the oriental region from Senegal, western Mali and Mauritania (Geniez et al. 2004), which is a similar distribution pattern as in Tarentola parvicularinata Joger, 1980 (Sauria: Phyllodactylidae) (Joger 1980). Joger (1979) regarded the species as endemic for the Variscian Fold Mountains between the Adrar Mountains in Mauritania and northern Senegal (see fig. 6). The limits of the geographic distribution of Agama cristata are less clear, and it is therefore more difficult to discuss their speciation and biogeography. However, the Senegal River, which separates A. boulengeri from A. cristata may have functioned to keep these lineages separated.

Relationships. Morphologically, A. cristata is very similar to A. boulengeri. But preliminary phylogenetic results indicate a sister taxa relation between A. cristata and A. weidholzi, with A. boulengeri placed as the sister taxon to all species analyzed (fig. 4). These results do not correlate with morphology, because A. weidholzi is a small, ground dwelling species without any tail crest, and is similar in morphology to the west and central African species A. gracilimembris. Grandison (1969) compared series of the two species and stated both as closely related. Gartshore (1985) also mentioned similarities in the colouration of gravid females between A. gracilimembris, A. doriae and A. sankaranica. There are also similarities between A. weidholzi, A. gracilimembris and A. sankaranica in behavioural aspects. All these are solitary species that lack social interactions outside of the breeding season (Gartshore 1985), and males occupy home ranges but do not defend territories.

Unfortunately, A. gracilimembris could not be included in the phylogenetic analysis because of a lack of fresh DNA samples of this rare species.

Biology. Agama cristata, like A. boulengeri, is a rupicolous species living on rocks in syntopy with Trachylepis quinquetaeniata (Sauria: Scincidae). Also Trachylepis affinis was recorded in the area nearby. In males, a mite pocket behind the tympanum is sometimes obvious (see fig. 7). These mite pocket-like structures are rare in agamid lizards. Arnold (1986) described nuchal pockets from iguanian lizards whereas Bertrand & Modry (2004) reported the first pocket-like structures in an Agama lizard (Agama caudospinosa). In this case, the newly described mite Pterygosoma livingstonii was found heavily concentrated in a skin-fold in front of the forelimb. Here, we report a similar pocket-like structure in front of the forelimb of an Agama cristata specimen (fig. 7, indicated by an arrow), which is similar to the pocket shown in Bertrand & Modry (2004). However, these species are not closely related, and we predict that these structures are more common in Agama lizards than they are currently believed to be.

Remarks on caudal anatomy. Some specimens of Agama cristata and A. boulengeri (e.g. a subadult female; TR 2353) show remarkable tail regeneration (fig. 8). Complete caudal regeneration in Agamid lizards is relatively rare, and regenerated tails are normally short and possess a knob-like end (e.g. Agama lionotus, see fig. 9). This is probably because Agamidae, like Chamaeleonidae and Platygonida, lack a cartilaginous stratum or plane (Ananjeva 1985, Ananjeva & Danov 1991). As an example, the total length of a specimen of A. cristata (TR 2352) is 89.5 mm; with a tail length (TL) in total of 68.8 mm and a regenerate length (RL) of 36.2 mm (RL/TL= 0.53). Therefore, the regenerate measures a bit more than half of the length of the tail. The total length of the regenerate is longer than the documented bifurcated tail of Lauddakia caucasisia (Ananjeva & Danov 1991) with a length of 23.1 mm.

This phenomenon is also visible in A. boulengeri. Three specimens of the ZMB collection show a relatively long, slender and not knobly regenerated tail. ZMB 55883 has a TL of 45.8 mm with a RL of 19.7 mm (RL/TL= 0.43). ZMB 55887 has a TL of 75.2 mm with a RL of 16.8 mm (RL/TL= 0.22), whereas ZMB 55884 has a TL of 109.6 mm with a RL of 46.4 mm (RL/TL= 0.42) (see fig. 8).

Also a specimen of the species Agama lionotus lionotus Boulenger, 1896 from East Africa (Kenya: Kitui District, NMK L/1252) shows a remarkable bifurcated tail, but here, in difference to the bifurcated tail reported by Ananjeva & Danov (1991) from Lauddakia caucasia, only one tail tip is a regenerate (see fig. 9).

Acknowledgements. We are thankful to G. Lenglet of the Institute royal des Sciences naturelles de Belgique (IRSNB) for the loan of important material. Many thanks to: Ulrich Joger, Hemmo Nickel and Dr. Guy Kremer who contributed images of some of the rare Agama species to this publication.

Appendix. Material examined

Agama boulengeri: MALI. Kayes: Chûtes de Féloú (ZFMK 20058, 22176 – 180, 25481 – 485). MAURITANIA. Adrar: Terjit (ZFMK 76917); 20km N Atar (ZFMK 79729); Ayoun-el Eltrons (ZFMK 83825 – 827); Guelt Metraucha (ZFMK 76862 – 864, 76868); Gouloula (=Passe de Galoula) (ZMB 32583, ZMB 55882 – 888, ZMB 32584).

‘*Agama insularis*’: GUINEA. Îles des Los, Île Roumé (MNHN 2008.0023, TR 2352 – 53; IRSNB 1392 a-e, 1728, 1733, 1729 a-e; MNHN 2008.0023, ZFMK 88247).

Agama weidholzi: GAMBIA. Bwiam (ZFMK 75001). MALI. 8km E Kassaro (ZFMK 20060); 5km E Kita (ZFMK 20061); 20km W Kita (ZFMK 20062); 9km N Fatao (ZFMK 20063 – 65): between Negala and Kassaro (ZFMK 20059). SENEGAL. 5km SO Darsalam (ZFMK 20066 – 68); 20km S Medina Gounas (ZFMK 20069); 13km SE Kolda (ZFMK 20066 – 078); 12km W Kounkané (ZFMK 20070 – 071); between Tiara and Mantanankani (ZFMK 20072).